วันอาทิตย์ที่ 7 สิงหาคม พ.ศ. 2559

ดาราศาสตร์

ดาราศาสตร์

นับเป็นวิชาที่เก่าแก่ที่สุดวิชาหนึ่ง และเป็นวิชาที่น่าสนใจมากอีกด้วย เพราะนับตั้งแต่มีมนุษย์อยู่บนโลก เขาย่อมได้เห็นได้สัมผัสกับสิ่งแวดล้อมตามธรรมชาติเสมอมา แล้วก็เริ่มสังเกตจดจำและเล่าต่อ ๆ กัน เช่น เมื่อมองออกไปรอบตัวเห็นพื้นดินราบ ดูออกไปไกล ๆ ก็ยังเห็นว่าพื้นผิวของโลกแบน จึงคิดกันว่าโลกแบน มองฟ้าเห็นโค้งคล้ายฝาชีหรือโดม มีดาวให้เห็นเคลื่อนข้ามศีรษะไปทุกคืน กลางวันมีลูกกลมแสงจ้า ให้แสง สี ความร้อน ซึ่งก็คือ ดวงอาทิตย์ ที่เคลื่อนขึ้นมาแล้วก็ลับขอบฟ้าไป ดวงอาทิตย์จึงมีความสำคัญกับเขามาก

การศึกษาดาราศาสตร์ในยุคแรก ๆ เป็นการเฝ้าดูและคาดเดาการเคลื่อนที่ของวัตถุท้องฟ้าเหล่านั้นที่สามารถมองเห็นได้ด้วยตาเปล่า ก่อนยุคสมัยที่กล้องโทรทรรศน์จะถูกประดิษฐ์ขึ้น มีสิ่งปลูกสร้างโบราณหลายแห่งที่เชื่อว่าเป็นสถานที่สำหรับการเฝ้าศึกษาทางดาราศาสตร์ เช่น สโตนเฮนจ์ นอกจากนี้การเฝ้าศึกษาดวงดาวยังมีความสำคัญต่อพิธีกรรม ความเชื่อ และเป็นการบ่งบอกถึงการเปลี่ยนฤดูกาล ซึ่งเป็นปัจจัยสำคัญต่อสังคมเกษตรกรรมการเพาะปลูก รวมถึงเป็นเครื่องบ่งชี้ถึงระยะเวลา วัน เดือน ปี
เมื่อสังคมมีวิวัฒนาการขึ้นในดินแดนต่าง ๆ การสังเกตการณ์ทางดาราศาสตร์ก็ซับซ้อนมากขึ้น โดยเฉพาะอย่างยิ่งใน เมโสโปเตเมีย กรีก จีน อียิปต์ อินเดีย และ มายา เริ่มมีแนวคิดเกี่ยวกับความสัมพันธ์ของธรรมชาติแห่งจักรวาลกว้างขวางขึ้น ผลการศึกษาดาราศาสตร์ในยุคแรก ๆ จะเป็นการบันทึกแผนที่ตำแหน่งของดวงดาวต่าง ๆ อันเป็นศาสตร์ที่ปัจจุบันเรียกกันว่า การวัดตำแหน่งดาว (astrometry) ผลจากการเฝ้าสังเกตการณ์ทำให้แนวคิดเกี่ยวกับการเคลื่อนที่ของดวงดาวต่าง ๆ เริ่มก่อตัวเป็นรูปร่างขึ้น ธรรมชาติการเคลื่อนที่ของดวงอาทิตย์ ดวงจันทร์ และโลก นำไปสู่แนวคิดเชิงปรัชญาเพื่อพยายามอธิบายปรากฏการณ์เหล่านั้น ความเชื่อดั้งเดิมคือโลกเป็นศูนย์กลางของจักรวาล โดยมีดวงอาทิตย์ ดวงจันทร์ และดวงดาวต่าง ๆ เคลื่อนที่ไปโดยรอบ แนวคิดนี้เรียกว่า แบบจำลองแบบโลกเป็นศูนย์กลางจักรวาล (geocentric model)
มีการค้นพบทางดาราศาสตร์ที่สำคัญไม่มากนักก่อนการประดิษฐ์กล้องโทรทรรศน์ ตัวอย่างการค้นพบเช่น ชาวจีนสามารถประเมินความเอียงของแกนโลกได้ประมาณหนึ่งพันปีก่อนคริสตกาล ชาวบาบิโลนค้นพบว่าปรากฏการณ์จันทรคราสจะเกิดขึ้นซ้ำเป็นช่วงเวลา เรียกว่า วงรอบซารอสและช่วงสองร้อยปีก่อนคริสตกาล ฮิปปาร์คัส นักดาราศาสตร์ชาวกรีก สามารถคำนวณขนาดและระยะห่างของดวงจันทร์ได้
ตลอดช่วงยุคกลาง การค้นพบทางดาราศาสตร์ในยุโรปกลางมีน้อยมากจนกระทั่งถึงคริสต์ศตวรรษที่ 13 แต่มีการค้นพบใหม่ ๆ มากมายในโลกอาหรับและภูมิภาคอื่นของโลก มีนักดาราศาสตร์ชาวอาหรับหลายคนที่มีชื่อเสียงและสร้างผลงานสำคัญแก่วิทยาการด้านนี้ เช่น Al-Battani และ Thebit รวมถึงคนอื่น ๆ ที่ค้นพบและตั้งชื่อให้แก่ดวงดาวด้วยภาษาอารบิก ชื่อดวงดาวเหล่านี้ยังคงมีที่ใช้อยู่จนถึงปัจจุบัน

การปฏิวัติทางวิทยาศาสตร์

ภาพร่างการสังเกตการณ์ดวงจันทร์ของกาลิเลโอ ทำให้เห็นว่าพื้นผิวดวงจันทร์นั้นขรุขระ
ในยุคเรอเนซองส์ นิโคเลาส์ โคเปอร์นิคัส ได้นำเสนอแนวคิดแบบจำลองดวงอาทิตย์เป็นศูนย์กลาง ซึ่งถูกต่อต้านอย่างมากจากศาสนจักร ทว่าได้รับการยืนยันรับรองจากงานศึกษาของกาลิเลโอ กาลิเลอี และ โยฮันเนส เคปเลอร์ โดยที่กาลิเลโอได้ประดิษฐ์กล้องโทรทรรศน์หักเหแสงแบบใหม่ขึ้นในปี ค.ศ. 1609 ทำให้สามารถเฝ้าสังเกตดวงดาวและนำผลจากการสังเกตมาช่วยยืนยันแนวคิดนี้
เคปเลอร์ได้คิดค้นระบบแบบใหม่ขึ้นโดยปรับปรุงจากแบบจำลองเดิมของโคเปอร์นิคัส ทำให้รายละเอียดการโคจรต่าง ๆ ของดาวเคราะห์และดวงอาทิตย์ที่ศูนย์กลางสมบูรณ์ถูกต้องมากยิ่งขึ้น แต่เคปเลอร์ก็ไม่ประสบความสำเร็จในการนำเสนอทฤษฎีนี้เนื่องจากกฎหมายในยุคสมัยนั้น จนกระทั่งต่อมาถึงยุคสมัยของเซอร์ ไอแซค นิวตัน ผู้คิดค้นหลักกลศาสตร์ท้องฟ้าและกฎแรงโน้มถ่วงซึ่งสามารถอธิบายการเคลื่อนที่ของดาวเคราะห์ได้อย่างสมบูรณ์ นิวตันยังได้คิดค้นกล้องโทรทรรศน์แบบสะท้อนแสงขึ้นด้วย
การค้นพบใหม่ ๆ เกิดขึ้นเรื่อย ๆ พร้อมไปกับการพัฒนาขนาดและคุณภาพของกล้องโทรทรรศน์ที่ดียิ่งขึ้น มีการจัดทำรายชื่อดาวอย่างละเอียดเป็นครั้งแรกโดย ลาซายล์ ต่อมานักดาราศาสตร์ชื่อ วิลเลียม เฮอร์เชล ได้จัดทำรายการโดยละเอียดของเนบิวลาและกระจุกดาว ค.ศ. 1781 มีการค้นพบดาวยูเรนัส ซึ่งเป็นการค้นพบดาวเคราะห์ดวงใหม่เป็นครั้งแรก ค.ศ. 1838 มีการประกาศระยะทางระหว่างดาวเป็นครั้งแรกโดยฟรีดดริค เบสเซล หลังจากตรวจพบพารัลแลกซ์ของดาว 61 Cygni
ระหว่างคริสต์ศตวรรษที่ 19 ออยเลอร์ คลาเราต์ และดาเลมเบิร์ต ได้คิดค้นคณิตศาสตร์เกี่ยวกับปัญหาสามวัตถุ (three-body problem หรือ n-body problem) ทำให้การประมาณการเคลื่อนที่ของดวงจันทร์และดาวเคราะห์สามารถทำได้แม่นยำขึ้น งานชิ้นนี้ได้รับการปรับปรุงต่อมาโดย ลากรองจ์ และ ลาปลาส ทำให้สามารถประเมินมวลของดาวเคราะห์และดวงจันทร์ได้
การค้นพบสำคัญทางดาราศาสตร์ประสบความสำเร็จมากขึ้นเมื่อมีเทคโนโลยีใหม่ ๆ เช่น การถ่ายภาพ และสเปกโตรสโคป เราทราบว่าดวงดาวต่าง ๆ ที่แท้เป็นดาวฤกษ์ที่มีลักษณะคล้ายคลึงกับดวงอาทิตย์ของเรานั่นเอง แต่มีอุณหภูมิ มวล และขนาดที่แตกต่างกันไป[10]
การค้นพบว่า ดาราจักรของเราหรือดาราจักรทางช้างเผือกนี้ เป็นกลุ่มของดาวฤกษ์ที่รวมตัวอยู่ด้วยกัน เพิ่งเกิดขึ้นในคริสต์ศตวรรษที่ 20 นี้เอง พร้อมกับการค้นพบการมีอยู่ของดาราจักรอื่น ๆ ต่อมาจึงมีการค้นพบว่า เอกภพกำลังขยายตัว โดยดาราจักรต่าง ๆ กำลังเคลื่อนที่ห่างออกจากเรา การศึกษาดาราศาสตร์ยุคใหม่ยังค้นพบวัตถุท้องฟ้าใหม่ ๆ อีกหลายชนิด เช่น เควซาร์ พัลซาร์ เบลซาร์ และดาราจักรวิทยุ ผลจากการค้นพบเหล่านี้นำไปสู่การพัฒนาทฤษฎีทางฟิสิกส์เพื่ออธิบายปรากฏการณ์ของวัตถุเหล่านี้เปรียบเทียบกับวัตถุประหลาดอื่น ๆ เช่น หลุมดำ และดาวนิวตรอน ศาสตร์ทางด้านฟิสิกส์จักรวาลวิทยามีความก้าวหน้าอย่างมากตลอดคริสต์ศตวรรษที่ 20 แบบจำลองบิกแบงได้รับการสนับสนุนจากหลักฐานต่าง ๆ ที่ค้นพบโดยนักดาราศาสตร์และนักฟิสิกส์ เช่น การแผ่รังสีไมโครเวฟพื้นหลังของจักรวาล กฎของฮับเบิล และการที่มีธาตุต่าง ๆ มากมายอย่างไม่คาดคิดในจักรวาลภายนอก

ดาราศาสตร์เชิงสังเกตการณ์

กล้องโทรทรรศน์วิทยุจำนวนมากเรียงรายในลานกว้าง ที่รัฐนิวเม็กซิโก สหรัฐอเมริกา

ในทางดาราศาสตร์ สารสนเทศส่วนใหญ่ได้จากการตรวจหาและวิเคราะห์โฟตอนซึ่งเป็นการแผ่รังสีแม่เหล็กไฟฟ้า[11] แต่อาจได้จากข้อมูลที่มากับรังสีคอสมิก นิวตริโน ดาวตก และในอนาคตอันใกล้อาจได้จากคลื่นความโน้มถ่วง
การแบ่งหมวดของดาราศาสตร์เชิงสังเกตการณ์สามารถแบ่งได้ตามการสังเกตการณ์สเปกตรัมแม่เหล็กไฟฟ้าในย่านต่าง ๆ โดยการสังเกตการณ์บางย่านสเปกตรัมสามารถกระทำได้บนพื้นผิวโลก แต่บางย่านจะสามารถทำได้ในชั้นบรรยากาศสูงหรือในอวกาศเท่านั้น การสังเกตการณ์ดาราศาสตร์ในย่านสเปกตรัมต่าง ๆ แสดงดังรายละเอียดต่อไปนี้

ดาราศาสตร์วิทยุ


ดาราศาสตร์วิทยุเป็นการตรวจหาการแผ่รังสีในความยาวคลื่นที่ยาวกว่า 1 มิลลิเมตร (ระดับมิลลิเมตรถึงเดคาเมตร)  เป็นการศึกษาดาราศาสตร์ที่แตกต่างจากการศึกษาดาราศาสตร์เชิงสังเกตการณ์รูปแบบอื่น ๆ เพราะเป็นการศึกษาคลื่นวิทยุซึ่งถือว่าเป็นคลื่นจริง ๆ มากกว่าเป็นการศึกษาอนุภาคโฟตอน จึงสามารถตรวจวัดได้ทั้งแอมปลิจูดและเฟสของคลื่นวิทยุซึ่งจะทำได้ยากกว่ากับคลื่นที่มีความยาวคลื่นต่ำกว่านี้
คลื่นวิทยุที่แผ่จากวัตถุดาราศาสตร์จำนวนหนึ่งอาจอยู่ในรูปของการแผ่รังสีความร้อน โดยมากแล้วการแผ่คลื่นวิทยุที่ตรวจจับได้บนโลกมักอยู่ในรูปแบบของการแผ่รังสีซิงโครตรอน ซึ่งเกิดจากการที่อิเล็กตรอนเคลื่อนที่เป็นคาบรอบเส้นแรงสนามแม่เหล็ก นอกจากนี้สเปกตรัมที่เกิดจากแก๊สระหว่างดาว โดยเฉพาะอย่างยิ่งเส้นสเปกตรัมของไฮโดรเจนที่ 21 เซนติเมตร จะสามารถสังเกตได้ในช่วงคลื่นวิทยุ
วัตถุดาราศาสตร์ที่สามารถสังเกตได้ในช่วงคลื่นวิทยุมีมากมาย รวมไปถึงซูเปอร์โนวา แก๊สระหว่างดาว พัลซาร์ และนิวเคลียสดาราจักรกัมมันต์

ดาราศาสตร์เชิงแสง


การสังเกตการณ์ดาราศาสตร์เชิงแสงเป็นการศึกษาดาราศาสตร์ที่เก่าแก่ที่สุด คือการสังเกตการณ์ท้องฟ้าด้วยดวงตามนุษย์ โดยอาศัยเครื่องมือช่วยบ้างเช่น กล้องโทรทรรศน์ ภาพที่มองเห็นถูกบันทึกเอาไว้โดยการวาด จนกระทั่งช่วงปลายคริสต์ศตวรรษที่ 19 และตลอดคริสต์ศตวรรษที่ 20 จึงมีการบันทึกภาพสังเกตการณ์ด้วยเครื่องมือถ่ายภาพ ภาพสังเกตการณ์ยุคใหม่มักใช้อุปกรณ์ตรวจจับแบบดิจิตอล ที่นิยมอย่างมากคืออุปกรณ์จับภาพแบบซีซีดี แม้ว่าแสงที่ตามองเห็นจะมีความยาวคลื่นอยู่ระหว่าง 4000 Å ถึง 7000 Å (400-700 nm)  แต่อุปกรณ์ตรวจจับเหล่านี้ก็มักจะมีความสามารถสังเกตภาพที่มีการแผ่รังสีแบบใกล้อัลตราไวโอเลต และใกล้อินฟราเรดได้ด้วย

ดาราศาสตร์อินฟราเรด


ดาราศาสตร์อินฟราเรด เป็นการตรวจหาและวิเคราะห์การแผ่รังสีในช่วงคลื่นอินฟราเรด (คือช่วงความยาวคลื่นที่ยาวกว่าแสงสีแดง) ยกเว้นในช่วงคลื่นที่ใกล้เคียงกับแสงที่ตามองเห็น การแผ่รังสีอินฟราเรดจะถูกชั้นบรรยากาศของโลกดูดซับไปมากแล้วชั้นบรรยากาศจะปลดปล่อยรังสีอินฟราเรดออกมาแทน ดังนั้นการสังเกตการณ์ในช่วงคลื่นอินฟราเรดจึงจำเป็นต้องทำที่ระดับบรรยากาศที่สูงและแห้ง หรือออกไปสังเกตการณ์ในอวกาศ การศึกษาดาราศาสตร์ในช่วงคลื่นอินฟราเรดมีประโยชน์มากในการศึกษาวัตถุที่เย็นเกินกว่าจะแผ่รังสีคลื่นแสงที่ตามองเห็นออกมาได้ เช่น ดาวเคราะห์ และแผ่นจานดาวฤกษ์ (circumstellar disk) ยิ่งคลื่นอินฟราเรดมีความยาวคลื่นมาก จะสามารถเดินทางผ่านกลุ่มเมฆฝุ่นได้ดีกว่าแสงที่ตามองเห็นมาก ทำให้เราสามารถเฝ้าสังเกตดาวฤกษ์เกิดใหม่ในเมฆโมเลกุลและในใจกลางของดาราจักรต่าง ๆ ได้โมเลกุลบางชนิดปลดปล่อยคลื่นอินฟราเรดออกมาแรงมาก ซึ่งทำให้เราสามารถศึกษาลักษณะทางเคมีในอวกาศได้ เช่น การตรวจพบน้ำบนดาวหาง เป็นต้น

ดาราศาสตร์พลังงานสูง


ดาราศาสตร์รังสีอัลตราไวโอเลตเป็นการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นสั้นกว่าแสงม่วง คือประมาณ 10-3200 Å (10-320 นาโนเมตร)  แสงที่ความยาวคลื่นนี้จะถูกชั้นบรรยากาศของโลกดูดซับไป ดังนั้นการสังเกตการณ์จึงต้องกระทำที่ชั้นบรรยากาศรอบนอก หรือในห้วงอวกาศ การศึกษาดาราศาสตร์รังสีอัลตราไวโอเลตจะใช้ในการศึกษาการแผ่รังสีความร้อนและเส้นการกระจายตัวของสเปกตรัมจากดาวฤกษ์สีน้ำเงินร้อนจัด (ดาวโอบี) ที่ส่องสว่างมากในช่วงคลื่นนี้ รวมไปถึงดาวฤกษ์สีน้ำเงินในดาราจักรอื่นที่เป็นเป้าหมายสำคัญในการสำรวจระดับอัลตราไวโอเลต วัตถุอื่น ๆ ที่มีการศึกษาแสงอัลตราไวโอเลตได้แก่ เนบิวลาดาวเคราะห์ ซากซูเปอร์โนวา และนิวเคลียสดาราจักรกัมมันต์ อย่างไรก็ดี แสงอัลตราไวโอเลตจะถูกฝุ่นระหว่างดวงดาวดูดซับหายไปได้ง่าย ดังนั้นการตรวจวัดแสงอัลตราไวโอเลตจากวัตถุจึงต้องนำมาปรับปรุงค่าให้ถูกต้องด้วย

ดาราศาสตร์รังสีเอ็กซ์


ดาราศาสตร์รังสีเอ็กซ์ คือการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นของรังสีเอ็กซ์ โดยทั่วไปวัตถุจะแผ่รังสีเอ็กซ์ออกมาจากการแผ่รังสีซิงโครตรอน (เกิดจากอิเล็กตรอนแกว่งตัวเป็นคาบรอบเส้นแรงสนามแม่เหล็ก) จากการแผ่ความร้อนของแก๊สเบาบางที่อุณหภูมิสูงกว่า 107 เคลวิน (เรียกว่า การแผ่รังสี bremsstrahlung) และจากการแผ่ความร้อนของแก๊สหนาแน่นที่อุณหภูมิสูงกว่า 107 เคลวิน (เรียกว่า การแผ่รังสีของวัตถุดำ) คลื่นรังสีเอ็กซ์มักถูกชั้นบรรยากาศของโลกดูดซับไป ดังนั้นการสังเกตการณ์ในช่วงความยาวคลื่นของรังสีเอ็กซ์จึงทำได้โดยอาศัยบัลลูนที่ลอยตัวสูงมาก ๆ หรือจากจรวดหรือจากยานสำรวจอวกาศเท่านั้น แหล่งกำเนิดรังสีเอ็กซ์ที่สำคัญได้แก่ ระบบดาวคู่รังสีเอ็กซ์ พัลซาร์ ซากซูเปอร์โนวา ดาราจักรชนิดรี กระจุกดาราจักร และแกนกลางดาราจักรกัมมันต์

ดาราศาสตร์รังสีแกมมา


ดาราศาสตร์รังสีแกมมาเป็นการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นที่สั้นที่สุดของสเปกตรัมแม่เหล็กไฟฟ้า เราสามารถสังเกตการณ์รังสีแกมมาโดยตรงได้จากดาวเทียมรอบโลก เช่น หอดูดาวรังสีแกมมาคอมป์ตัน หรือกล้องโทรทรรศน์เชเรนคอฟ กล้องเชเรนคอฟไม่ได้ตรวจจับรังสีแกมมาโดยตรง แต่ตรวจจับแสงวาบจากแสงที่ตามองเห็นอันเกิดจากการที่รังสีแกมมาถูกชั้นบรรยากาศของโลกดูดซับไป
แหล่งกำเนิดรังสีแกมมาโดยมากมาจากการเกิดแสงวาบรังสีแกมมา ซึ่งเป็นรังสีแกมมาที่แผ่ออกจากวัตถุเพียงชั่วไม่กี่มิลลิวินาทีหรืออาจนานหลายพันวินาทีก่อนที่มันจะสลายตัวไป แหล่งกำเนิดรังสีแกมมาชั่วคราวเช่นนี้มีจำนวนกว่า 90% ของแหล่งกำเนิดรังสีแกมมาทั้งหมด มีแหล่งกำเนิดรังสีแกมมาเพียง 10% เท่านั้นที่เป็นแหล่งกำเนิดแบบถาวร ได้แก่ พัลซาร์ ดาวนิวตรอน และวัตถุที่อาจกลายไปเป็นหลุมดำได้ เช่น นิวเคลียสดาราจักรกัมมันต์

ไม่มีความคิดเห็น:

แสดงความคิดเห็น