วันอาทิตย์ที่ 14 สิงหาคม พ.ศ. 2559

กาแล็กซี่ ทางช้างเผือก

ทางช้างเผือก

นักปรัชญาชาวกรีกชื่อ ดีโมครีตัส (450-370 ปีก่อนคริสตกาล) เสนอว่าแถบสว่างบนฟากฟ้ายามราตรีที่รู้จักกันในชื่อ ทางช้างเผือก อาจจะประกอบด้วยดวงดาวที่อยู่ไกลออกไปนักดาราศาสตร์ชาวเปอร์เซียชื่อ อาบู รายาน อัล-บิรูนิ (Abū Rayhān al-Bīrūnī) (ค.ศ. 973-1048) ก็คิดว่าดาราจักรทางช้างเผือกเป็นที่รวมดาวฤกษ์มากมายเหมือนกลุ่มเมฆอันไม่อาจนับได้[15] การพิสูจน์ทฤษฎีนี้เกิดขึ้นในปี ค.ศ. 1610 เมื่อ กาลิเลโอ กาลิเลอี ศึกษาดาราจักรทางช้างเผือกผ่านกล้องโทรทรรศน์ และค้นพบว่ามันประกอบด้วยดาวจาง ๆ จำนวนมาก หนังสือเล่มหนึ่งในปี ค.ศ. 1755 อิมมานูเอล คานท์ วาดภาพดาราจักรจากผลงานก่อนหน้าของโทมัส ไรท์ โดยจินตนาการ (ได้ตรงเผง) ว่าดาราจักรน่าจะเป็นโครงสร้างหมุนวนที่ประกอบด้วยดาวฤกษ์จำนวนมากซึ่งดึงดูดกันและกันไว้ด้วยแรงโน้มถ่วงคล้ายคลึงกับระบบสุริยะ แต่ในระดับที่ใหญ่กว่ามาก เรามองเห็นแผ่นจานของดาวฤกษ์เหล่านั้นเป็นแถบอยู่บนท้องฟ้าได้เนื่องจากมุมมองของเราที่อยู่ภายในจานนั่นเอง คานท์ยังคิดไปอีกว่า เนบิวลาสว่างบางแห่งที่ปรากฏบนฟ้ายามค่ำคืนอาจเป็นดาราจักรอื่นที่แยกจากเราก็ได้แผนภาพดาราจักรทางช้างเผือกสร้างจากกความพยายามครั้งแรกที่จะบรรยายรูปร่างของทางช้างเผือกและตำแหน่งของดวงอาทิตย์ในดาราจักรนั้นเริ่มต้นขึ้นในปี ค.ศ. 1785 เมื่อ วิลเลียม เฮอร์เชล เฝ้านับดวงดาวบนท้องฟ้าส่วนต่างๆ อย่างละเอียด เขาสร้างแผนภาพของดาราจักรขึ้นโดยสมมุติว่าระบบสุริยะอยู่ใกล้กับศูนย์กลางจากจุดเริ่มต้นที่ละเอียดละออนี้ แคปทีย์น สามารถสร้างภาพวาดดาราจักรทรงรีขนาดเล็ก (เส้นผ่านศูนย์กลางราว 15 กิโลพาร์เซก) โดยมีดวงอาทิตย์อยู่ใกล้ศูนย์กลางได้ในปี ค.ศ. 1920 ต่อมา ฮาร์โลว์ แชปลีย์ ใช้วิธีการที่แตกต่างออกไปโดยอ้างอิงจากการจัดทำบัญชีกระจุกดาวทรงกลม สร้างเป็นภาพที่แตกต่างไปอย่างสิ้นเชิง คือแผ่นจานแบนมีเส้นผ่านศูนย์กลางประมาณ 70 กิโลพาร์เซก ส่วนดวงอาทิตย์อยู่ห่างจากจุดศูนย์กลางมากการวิเคราะห์ทั้งสองรูปแบบนี้ไม่สามารถอธิบายการดูดกลืนแสงโดยฝุ่นระหว่างดาวซึ่งปรากฏในระนาบดาราจักรได้ แต่หลังจากที่โรเบิร์ต จูเลียส ทรัมเพลอร์ สามารถระบุปริมาณของปรากฏการณ์นี้ได้ในปี ค.ศ. 1930 โดยการศึกษากระจุกดาวเปิด ภาพปัจจุบันของดาราจักรทางช้างเผือกของเราก็เป็นรูปเป็นร่างขึ้น 

เนบิวลา

ปี ค.ศ. 1917 เฮเบอร์ เคอร์ติส สังเกตพบโนวา เอส แอนดรอเมดา ซึ่งอยู่ใน "เนบิวลาใหญ่แอนดรอเมดา" (วัตถุท้องฟ้าของเมสสิเยร์ หมายเลขM31) เมื่อตรวจสอบบันทึกภาพถ่าย เขาพบโนวาเพิ่มอีก 11 แห่ง เคอร์ติสสังเกตว่าโนวาเหล่านี้มีค่าความสว่างเฉลี่ยจางกว่ากลุ่มที่อยู่ในดาราจักรของเรา 10 อันดับ ผลที่ได้คือเขาสามารถประเมินระยะห่างของโนวาเหล่านั้นได้ว่าอยู่ไกล 150,000 พาร์เซก เขากลายเป็นผู้สนับสนุนสมมุติฐาน "island universes" ที่ระบุว่าเนบิวลารูปก้นหอย แท้จริงมันคือดาราจักรที่แยกเป็นอิสระในช่วงปลายคริสต์ศตวรรษที่ 18 ชาลส์ เมสสิเยร์ รวบรวมรายชื่อเนบิวลา (วัตถุท้องฟ้าที่สว่างและปรากฏรูปร่างเหมือนกลุ่มแก๊ส) ที่สว่างที่สุด 109 รายการ และต่อมาวิลเลียม เฮอร์เชล รวบรวมรายชื่อเนบิวลาได้ในปริมาณมากกว่าที่ 5,000 รายการปี ค.ศ. 1845 ลอร์ดรอสส์ ได้สร้างกล้องโทรทรรศน์ใหม่ทำให้สามารถแยกแยะเนบิวลาทรงกลมกับทรงรีออกจากกันได้ เขายังแยกแยะจุดแสงที่แยกจากกันในเนบิวลาเหล่านี้ได้อีกจำนวนหนึ่ง ทำให้เชื่อว่าการคาดคะเนของคานท์ก่อนหน้านี้น่าจะเป็นจริง
ประเด็นนี้คลี่คลายลงได้ในช่วงต้นทศวรรษ 1920 เมื่อ เอ็ดวิน ฮับเบิล อาศัยกล้องโทรทรรศน์กล้องใหม่ของเขา สามารถแยกแยะองค์ประกอบด้านนอกของเนบิวลารูปก้นหอยจำนวนหนึ่งได้ว่ามันประกอบด้วยดาวฤกษ์เดี่ยว ๆ หลายดวง และระบุดาวแปรแสงชนิดเซเฟอิดได้อีกด้วย ทำให้เขาสามารถประเมินระยะห่างของเนบิวลาเหล่านั้นได้ว่ามันอยู่ห่างไกลจากโลกของเราเกินกว่าที่จะเป็นส่วนหนึ่งของทางช้างเผือก ปี ค.ศ. 1936 ฮับเบิลสร้างระบบการจัดกลุ่มดาราจักรซึ่งยังคงใช้มาจนถึงปัจจุบัน เรียกว่า "ลำดับของฮับเบิล" (Hubble Sequence)ในปี ค.ศ. 1920 มีการถกเถียงทางวิชาการเรียกว่า "TheGreat Debate" ระหว่าง ฮาร์โลว์ แชปลีย์ กับ เฮเบอร์ เคอร์ติส เกี่ยวกับลักษณะทางธรรมชาติของทางช้างเผือก เนบิวลารูปก้นหอย และขนาดของเอกภพ เคอร์ติสชี้ให้เห็นถึงแถบสีดำในเนบิวลาเหล่านั้นซึ่งดูคล้ายกับฝุ่นมืดในทางช้างเผือก รวมไปถึงการเคลื่อนดอปเพลอร์ เพื่อสนับสนุนแนวคิดของเขาว่าเนบิวลาใหญ่แอนดรอเมดาแท้จริงคือดาราจักรหนึ่ง 

งานวิจัยยุคใหม่

ปี ค.ศ. 1944 เฮนดริค ฟาน เดอ ฮัลสต์ ทำนายเรื่องการแผ่รังสีของคลื่นไมโครเวฟที่ความยาวคลื่น 21 ซม. ว่าเป็นผลจากอะตอมของแก๊สไฮโดรเจนระหว่างดาว การสังเกตการณ์ดังกล่าวในปี ค.ศ. 1951 ได้ช่วยพัฒนาแนวทางการศึกษาเกี่ยวกับทางช้างเผือกมากขึ้น เพราะมันไม่ได้รับผลกระทบจากการดูดกลืนโดยฝุ่นในอวกาศ และการเคลื่อนดอปเพลอร์ของมันก็ช่วยให้สามารถสร้างแผนที่การเคลื่อนที่ของแก๊สในดาราจักรได้ การสังเกตการณ์นี้นำไปสู่สมมุติฐานว่ามีโครงสร้างรูปคานหมุนอยู่ที่กลางดาราจักรกล้องโทรทรรศน์วิทยุที่พัฒนามากยิ่งขึ้น ทำให้สามารถตรวจสอบร่องรอยของแก๊สไฮโดรเจนในดาราจักรอื่นได้อีกด้วย
ช่วงทศวรรษ 1970 เวอรา รูบิน ศึกษาเรื่องความเร็วในการหมุนของแก๊สในดาราจักร เธอพบว่ามวลที่สังเกตได้ทั้งหมด (จากดาวฤกษ์และแก๊ส) ไม่สอดคล้องกันกับความเร็วในการหมุนของแก๊ส ปัญหานี้จะสามารถอธิบายได้ด้วยการมีอยู่ของสสารมืดที่มองไม่เห็นจำนวนมหาศาล
นับตั้งแต่ทศวรรษ 1990 กล้องโทรทรรศน์อวกาศฮับเบิลได้ช่วยให้การสังเกตการณ์พัฒนายิ่งขึ้น การค้นพบประการหนึ่งคือ สสารมืดที่หายไปในดาราจักรของเราไม่อาจเป็นเพียงดาวฤกษ์เล็ก ๆ ที่จางมากแต่เพียงอย่างเดียว การสังเกตการณ์อวกาศห้วงลึกของฮับเบิล (Hubble Deep Field: HDF) ซึ่งเป็นการถ่ายภาพโดยเปิดรับแสงเป็นเวลานานในพื้นที่ที่ดูว่างเปล่าบนท้องฟ้า ได้เผยให้เห็นว่ามีดาราจักรอื่นอีกราว 125,000 ล้านแห่งในเอกภพแห่งนี้เทคโนโลยีที่ก้าวหน้าขึ้นในการตรวจจับภาพสเปกตรัมซึ่งมองไม่เห็นด้วยตาเปล่า (กล้องโทรทรรศน์วิทยุ กล้องอินฟราเรด และกล้องโทรทรรศน์รังสีเอกซ ช่วยให้เราสามารถตรวจพบดาราจักรอื่น ๆ ที่กล้องฮับเบิลตรวจไม่พบ โดยเฉพาะอย่างยิ่งการสำรวจดาราจักรในเขตบดบัง(ส่วนที่ถูกบดบังโดยทางช้างเผือก) ทำให้มีการค้นพบดาราจักรใหม่

รูปทรงของดาราจักร

รูปทรงของดาราจักร
ป็นกลุ่มของดาวฤกษ์นับล้านดวง กับสสารระหว่างดาวอันประกอบด้วยแก๊ส ฝุ่น และสสารมืดรวมอยู่ด้วยกันด้วยแรงโน้มถ่วง คำนี้มีที่มาจากภาษากรีกว่า galaxias [γαλαξίας] หมายถึง "น้ำนม" ซึ่งสื่อโดยตรงถึงดาราจักรทางช้างเผือก (Milky Way) ดาราจักรโดยทั่วไปมีขนาดน้อยใหญ่ต่างกัน นับแต่ดาราจักรแคระที่มีดาวฤกษ์ประมาณสิบล้านดวงไปจนถึงดาราจักรขนาดยักษ์ที่มีดาวฤกษ์นับถึงล้านล้านดวงโคจรรอบศูนย์กลางมวลจุดเดียวกัน ในดาราจักรหนึ่ง ๆ ยังประกอบไปด้วยระบบดาวหลายดวง กระจุกดาวจำนวนมาก และเมฆระหว่างดาวหลายประเภท ดวงอาทิตย์ของเราเป็นหนึ่งในบรรดาดาวฤกษ์ในดาราจักรทางช้างเผือก เป็นศูนย์กลางของระบบสุริยะซึ่งมีโลกและวัตถุอื่น ๆ โคจรโดยรอบ
ในอดีตมีการแบ่งดาราจักรเป็นชนิดต่าง ๆ โดยจำแนกจากลักษณะที่มองเห็นด้วยตา รูปแบบที่พบโดยทั่วไปคือดาราจักรรี (elliptical galaxy)ซึ่งปรากฏให้เห็นเป็นรูปทรงรี ดาราจักรชนิดก้นหอย (spiral galaxy) เป็นดาราจักรรูปร่างแบนเหมือนจาน ภายในมีแขนฝุ่นเป็นวงโค้ง ดาราจักรที่มีรูปร่างไม่แน่นอนหรือแปลกประหลาดเรียกว่าดาราจักรแปลก (peculiar galaxy) ซึ่งมักเกิดจากการถูกรบกวนด้วยแรงโน้มถ่วงของดาราจักรข้างเคียง อันตรกิริยาระหว่างดาราจักรในลักษณะนี้อาจส่งผลให้ดาราจักรมารวมตัวกัน และทำให้เกิดสภาวะที่ดาวฤกษ์มาจับกลุ่มกันมากขึ้นและกลายสภาพเป็นดาราจักรที่สร้างดาวฤกษ์ใหม่อย่างบ้าคลั่ง เรียกว่าดาราจักรชนิดดาวกระจาย (starburst galaxy) นอกจากนี้ดาราจักรขนาดเล็กที่ปราศจากโครงสร้างอันเชื่อมโยงกันก็มักถูกเรียกว่าดาราจักรไร้รูปแบบ (irregular galaxy)
เชื่อกันว่าในเอกภพที่สังเกตได้มีดาราจักรอยู่ประมาณหนึ่งแสนล้านแห่งดาราจักรส่วนใหญ่มีเส้นผ่านศูนย์กลางระหว่าง 1,000 ถึง 100,000 พาร์เซกและแยกห่างจากกันและกันนับล้านพาร์เซก (หรือเมกะพาร์เซก)
ช่องว่างระหว่างดาราจักรประกอบด้วยแก๊สเบาบางที่มีความหนาแน่นเฉลี่ยต่ำกว่า 1 อะตอมต่อลูกบาศก์เมตร ดาราจักรส่วนใหญ่จะจับกลุ่มเรียกว่ากระจุกดาราจักร (cluster) ในบางครั้งกลุ่มของดาราจักรนี้อาจมีขนาดใหญ่มาก เรียกว่ากลุ่มกระจุกดาราจักร (supercluster) โครงสร้างขนาดมหึมาขึ้นไปกว่านั้นเป็นกลุ่มดาราจักรที่โยงใยถึงกันเรียกว่า ใยเอกภพ (filament) ซึ่งกระจายอยู่ครอบคลุมเนื้อที่อันกว้างใหญ่ไพศาลของเอกภพ
แม้จะยังไม่เป็นที่เข้าใจนัก แต่ดูเหมือนว่าสสารมืดจะเป็นองค์ประกอบกว่า 90% ของมวลในดาราจักรส่วนใหญ่ ข้อมูลจากการสังเกตการณ์พบว่าหลุมดำมวลยวดยิ่งอาจอยู่ที่บริเวณใจกลางของดาราจักรจำนวนมาก แม้จะไม่ใช่ทั้งหมด มีข้อเสนอว่ามันอาจเป็นสาเหตุเริ่มต้นของนิวเคลียสดาราจักรกัมมันต์ (active galactic nucleus: AGN) ซึ่งพบที่บริเวณแกนกลางของดาราจักร ดาราจักรทางช้างเผือกเองก็มีหลุมดำเช่นว่านี้อยู่ที่นิวเคลียสด้วยอย่างน้อยหนึ่งหลุม

สารคดีท่องโลกกว้าง


เอกภพและกาแล็กซี่


เอกภพและกาแล็กซี่

โดยทั่วไปนิยามว่าเป็นผลรวมของการดำรงอยู่ รวมทั้งดาวเคราะห์ ดาวฤกษ์ ดาราจักร สิ่งที่บรรจุอยู่ในอวกาศระหว่างดาราจักร และสสารและพลังงานทั้งหมด
การสังเกตเอกภพทางวิทยาศาสตร์ ซึ่งเชื่อกันว่ามีเส้นผ่านศูนย์กลาง 93,000 ล้านปีแสง นำไปสู่อนุมานขั้นแรกเริ่มของเอกภพ การสังเกตเหล่านี้แนะว่า เอกภพถูกควบคุมด้วยกฎทางฟิสิกส์และค่าคงที่เดียวกันตลอดขนาดและประวัติศาสตร์ส่วนใหญ่ ทฤษฎีบิกแบงเป็นแบบจำลองจักรวาลวิทยาทั่วไปซึ่งอธิบายพัฒนาการแรกเริ่มของเอกภพ ซึ่งในจักรวาลวิทยากายภาพเชื่อว่าเกิดขึ้นเมื่อราว 13,700 ล้านปีก่อน
มีนักฟิสิกส์มากมายเชื่อสมมุติฐานเกี่ยวกับพหุภพ ซึ่งกล่าวไว้ว่าเอกภพอาจเป็นหนึ่งในภพจำนวนมากที่มีอยู่เช่นกันระยะทางไกลสุดที่เป็นไปได้ทางทฤษฎีแก่มนุษย์ที่จะมองเห็นอธิบายว่าเป็น เอกภพที่สังเกตได้ การสังเกตได้แสดงว่า เอกภพดูจะขยายตัวในอัตราเร่ง และมีหลายแบบจำลองเกิดขึ้นเพื่อพยากรณ์ชะตาสุดท้ายของเอกภพ


สารคดีสำรวจโลก


การสำรวจ
ยุคแห่งการสำรวจ หรือ ยุคแห่งการค้นพบ ( Age of Exploration หรือ Age of Discovery) เป็นช่วงระยะเวลาในประวัติศาสตร์โลกที่เริ่มตั้งแต่คริสต์ศตวรรษที่ 15 ไปจนถึงคริสต์ศตวรรษที่ 17 ในช่วงเวลานั้นเป็นช่วงที่ชาวยุโรปออกเดินทางไปสำรวจทางทะเลในโลกที่กว้างออกไปจากตัวทวีปยุโรปเองโดยมีจุดประสงค์เพื่อหาคู่ค้าขายใหม่ และโดยเฉพาะเพื่อการแสวงหาสินค้าเพื่อสนองความต้องการของตลาดตามต้องการ สินค้าที่เป็นที่ต้องการกันมากในยุโรปในขณะนั้นคือทอง เงิน และ เครื่องเทศ
ยุคแห่งการสำรวจประจวบกับช่วงที่ชาวยุโรปตะวันตกเริ่มใช้เข็มทิศในการกำหนดและระบุเส้นทาง, การใช้วิธีการเดินเรือเดินทะเลแบบใหม่, การมีแผนที่ใหม่ และความก้าวหน้าทางดาราศาสตร์ ความก้าวหน้าเหล่านี้ช่วยในการแสวงหาเส้นทางการค้าขายใหม่ไปยังเอเชียโดยเลี่ยงอุปสรรคถ้าการใช้ทะเลเมดิเตอร์เรเนียนที่อยู่ภายใต้การควบคุมของมหาอำนาจที่เป็นปฏิปักษ์ สิ่งที่สำคัญที่สุดที่วิวัฒนาการขึ้นสำหรับการเดินทางทางทะเลคือเรือชนิดใหม่สองแบบที่ออกแบบโดยโปรตุเกส--เรือคาร์แร็ค (Carrack) และ เรือคาราเวล (Caravel) ที่วิวัฒนาการมาจากการออกแบบเรือในยุคกลางที่ใช้ในการเดินเรือในทะเลเหนือและทะเลเมดิเตอร์เรเนียน เรือสองชนิดนี้เป็นเรือสองชนิดแรกที่ให้ความปลอดภัยพอที่จะฝ่าคลื่นฝ่าลมในมหาสมุทรแอตแลนติกได้เมื่อเทียบกับเรือรุ่นก่อนหน้านั้นที่ใช้กันเฉพาะในบริเวณที่คลื่นลมไม่รุนแรงเทียบเท่ากับการเดินทางกลางมหาสมุทร




สารคดีท่องจักรวาล

          จักรวาล
      
       จักรวาลของเราที่มีดวงอาทิตย์ เป็นศูนย์กลางนั้นได้ ถือกำเนิดมาจากกลุ่มแก๊สร้อนกลุ่มหนึ่ง ของทางช้างเผือก เมื่อประมาณ 5,000 ล้านปีมาแล้ว จักรวาลนี้เป็นจักรวาลที่มีความไม่ธรรมดา อยู่หลายประการ เช่น มีสิ่งมีชีวิต มีวงโคจรของดาวเคราะห์บริวารของจักรวาลนี้ ที่แทบจะอยู่ในระนาบเดียวกันหมด นอกจากนี้ดาวเคราะห์ส่วนมาก จะหมุนรอบตัวเองในทิศทางเดียวกัน ยกเว้นดาวศุกร์และพลูโต ซึ่งหมุนสวนทิศกับดาวดวงอื่นๆ ที่แปลกสุดแปลกคือดาวมฤตยูนั้น จะตะแคงตัวหมุน ครั้นเมื่อนักดาราศาสตร์ เปรียบเทียบความเร็วในการโคจร ของดาวเคราะห์และดวงอาทิตย์แล้ว เขาก็พบว่าดวงอาทิตย์ของเรา หมุนช้าอย่างแทบไม่น่าเชื่อ แค่นี้ยังไม่พอ นักวิทยาศาสตร์ก็ยังรู้แปลก ที่ยังตอบไม่ได้ว่าเหตุใดดวงจันทร์ ของโลกและดวงจันทร์ของดาวพลูโตจึงมีขนาดใหญ่เมื่อเปรียบเทียบกับดาวแม่ ในขณะที่ดวงจันทร์ของดาวเคราะห์อื่นๆ นั้นเล็กนิดเดียว และดวงจันทร์เหล่านั้นมาจากไหน เหตุใดดาวเคราะห์ที่อยู่ใกล้ดวงอาทิตย์จึงประกอบด้วยธาตุหนัก แต่เหล่าดาวที่อยู่ไกลจึงมีองค์ประกอบที่เป็นธาตุเบา เหตุใด เหตุใด และเหตุใด
ทฤษฎีใดๆ ของสุริยจักรวาลที่ถูกต้อง และสมบูรณ์จะต้องอธิบายและตอบคำถามต่างๆ ที่กล่าวมาข้างต้นนี้ได้หมด
ในอดีตเมื่อประมาณ 200 ปีมาแล้ว นักดาราศาสตร์เคยวาดฝันเกี่ยวกับกำเนิดของสุริยจักรวาลว่าได้มีดาวฤกษ์ดวงใหญ่อีกหนึ่งดวงโคจรมาใกล้ดวงอาทิตย์ของเรา และแรงดึงดูดอันมหาศาลของดวงดาวนั้นได้ดึงดูดแก๊สร้อนจากดวงอาทิตย์ให้หลุดปลิวลอยไปในอวกาศ เมื่อแก๊สนั้นเย็นลง มันจึงจับตัวแข็งเป็นดาวเคราะห์ แต่หลักฐานต่างๆ ในปัจจุบันส่อแสดงให้เห็นแล้วว่า ดวงอาทิตย์และดาวเคราะห์ต่างๆ นั้นเกิดมาพร้อมๆ กัน ดังนั้นทฤษฎีนี้จึงต้องตกไป
ส่วนนักปราชญ์ชื่อ Kant และนักฟิสิกส์ชื่อ Laplace นั้นเคยเชื่อว่า สุริยจักรวาลเกิดจากกลุ่มแก๊สที่หมุนรอบตัวเองจนมีลักษณะเป็นจานกลมเมื่อส่วนต่างๆ ของขอบจานเย็นลงมันจะหดตัวและจับตัวรวมกันเป็นดาวเคราะห์ต่างๆ แต่ถ้าทฤษฎีนี้เป็นจริง เมื่อดาวเคราะห์ต่างๆ ถือกำเนิดขึ้นมาแล้ว ดวงอาทิตย์ก็ควรจะหมุนเร็วขึ้น แต่กลับปรากฏว่าดวงอาทิตย์นั้นหมุนช้ามาก ทฤษฎีนี้จึงต้องมีการปรับปรุง
การสังเกตข้อมูลที่ดาวเทียม Infrared Astronomical Satellite ส่งมา ทำให้นักวิทยาศาสตร์ ได้เห็นดาวฤกษ์หลายดวง เช่น Beta Pictoris ว่ามีแก๊สเย็นห้อมล้อมอยู่ การเห็นนี้จึงทำให้นักดาราศาสตร์ปัจจุบันคิดว่า นี่คือภาพของสุริยจักรวาลตอนถือกำเนิดใหม่ๆ 


กาแล็กซี่

กาแล็กซี่

มีรูปทรงแตกต่างกันหลายประเภท ซึ่งสามารถแบ่งเป็นประเภทใหญ่ๆ ได้ 2 ประเภทคือ กาแล็กซีปกติ (Regular galaxy) ที่มีสัณฐานรูปทรงชัดเจนสามารถแบ่งได้ตามแผนภาพส้อมเสียง (Hubble Turning Fork) ตามที่แสดงในภาพที่   และกาแล็กซีไม่มีรูปแบบ (Irregular Galaxy) ที่ไม่มีรูปทรงสัณฐานชัดเลย เช่น เมฆแมกเจลแลนใหญ่ เมฆแมกเจลแลนเล็ก ซึ่งเป็นกาแล็กซีบริวารของทางช้างเผือก 

ในต้นคริสศตวรรษที่ 20 เอ็ดวิน ฮับเบิล (Edwin Hubble) นักดาราศาสตร์ชาวอเมริกันได้ทำการศึกษากาแล็กซีด้วยกล้องโทรทรรศน์ขนาดใหญ่ และจำแนกประเภทของกาแล็กซีตามรูปทรงสัณฐานออกเป็น 4 ประเภท ได้แก่
  1. กาแล็กซีรี (Elliptical Galaxy) มีสัณฐานเป็นทรงรี แบ่งย่อยได้ 8 แบบ ตั้งแต่ E0 - E7 โดย E0 มีความรีน้อยที่สุด และ E7 มีความรีมากที่สุด  
  2. กาแล็กซีกังหัน (Spiral Galaxy) แบ่งย่อยเป็น 3 แบบ กาแล็กซีกังหัน Sa มีส่วนป่องหนาแน่น แขนไม่ชัดเจน, กาแล็กซีกังหัน Sb มีส่วนป่องใหญ่ แขนยาวปานกลาง, กาแล็กซีกังหัน Sc มีส่วนป่องเล็ก แขนยาวหนาแน่น 
  3. กาแล็กซีกังหันแบบมีคาน หรือ กาแล็กซีกังหันบาร์ (Barred Spiral Galaxy) แบ่งย่อยเป็น 3 แบบ  กาแล็กซีกังหันบาร์ SBa มีส่วนป่องใหญ่ไม่เห็นคานไม่ชัดเจน, กาแล็กซีกังหันบาร์ SBb มีส่วนป่องขนาดกลาง เห็นคานได้ชัดเจน, กาแล็กซีกังหันบาร์ SBc มีส่วนป่องเล็กมองเห็นคานยาวชัดเจน
  4. กาแล็กซีลูกสะบ้า หรือ กาแล็กซีเลนส์ (Lenticular Galaxy) ป็นกาแล็กซีที่ไม่มีลักษณะก้ำกึ่งระหว่างกาแล็กซีรีและกาแล็กซีกังหัน กล่าวคือ ส่วนโป่งขนาดใหญ่และไม่มีแขนกังหัน (แบบ S0 หรือ SB0) 

วันอาทิตย์ที่ 7 สิงหาคม พ.ศ. 2559

ดาราศาสตร์

ดาราศาสตร์

นับเป็นวิชาที่เก่าแก่ที่สุดวิชาหนึ่ง และเป็นวิชาที่น่าสนใจมากอีกด้วย เพราะนับตั้งแต่มีมนุษย์อยู่บนโลก เขาย่อมได้เห็นได้สัมผัสกับสิ่งแวดล้อมตามธรรมชาติเสมอมา แล้วก็เริ่มสังเกตจดจำและเล่าต่อ ๆ กัน เช่น เมื่อมองออกไปรอบตัวเห็นพื้นดินราบ ดูออกไปไกล ๆ ก็ยังเห็นว่าพื้นผิวของโลกแบน จึงคิดกันว่าโลกแบน มองฟ้าเห็นโค้งคล้ายฝาชีหรือโดม มีดาวให้เห็นเคลื่อนข้ามศีรษะไปทุกคืน กลางวันมีลูกกลมแสงจ้า ให้แสง สี ความร้อน ซึ่งก็คือ ดวงอาทิตย์ ที่เคลื่อนขึ้นมาแล้วก็ลับขอบฟ้าไป ดวงอาทิตย์จึงมีความสำคัญกับเขามาก

การศึกษาดาราศาสตร์ในยุคแรก ๆ เป็นการเฝ้าดูและคาดเดาการเคลื่อนที่ของวัตถุท้องฟ้าเหล่านั้นที่สามารถมองเห็นได้ด้วยตาเปล่า ก่อนยุคสมัยที่กล้องโทรทรรศน์จะถูกประดิษฐ์ขึ้น มีสิ่งปลูกสร้างโบราณหลายแห่งที่เชื่อว่าเป็นสถานที่สำหรับการเฝ้าศึกษาทางดาราศาสตร์ เช่น สโตนเฮนจ์ นอกจากนี้การเฝ้าศึกษาดวงดาวยังมีความสำคัญต่อพิธีกรรม ความเชื่อ และเป็นการบ่งบอกถึงการเปลี่ยนฤดูกาล ซึ่งเป็นปัจจัยสำคัญต่อสังคมเกษตรกรรมการเพาะปลูก รวมถึงเป็นเครื่องบ่งชี้ถึงระยะเวลา วัน เดือน ปี
เมื่อสังคมมีวิวัฒนาการขึ้นในดินแดนต่าง ๆ การสังเกตการณ์ทางดาราศาสตร์ก็ซับซ้อนมากขึ้น โดยเฉพาะอย่างยิ่งใน เมโสโปเตเมีย กรีก จีน อียิปต์ อินเดีย และ มายา เริ่มมีแนวคิดเกี่ยวกับความสัมพันธ์ของธรรมชาติแห่งจักรวาลกว้างขวางขึ้น ผลการศึกษาดาราศาสตร์ในยุคแรก ๆ จะเป็นการบันทึกแผนที่ตำแหน่งของดวงดาวต่าง ๆ อันเป็นศาสตร์ที่ปัจจุบันเรียกกันว่า การวัดตำแหน่งดาว (astrometry) ผลจากการเฝ้าสังเกตการณ์ทำให้แนวคิดเกี่ยวกับการเคลื่อนที่ของดวงดาวต่าง ๆ เริ่มก่อตัวเป็นรูปร่างขึ้น ธรรมชาติการเคลื่อนที่ของดวงอาทิตย์ ดวงจันทร์ และโลก นำไปสู่แนวคิดเชิงปรัชญาเพื่อพยายามอธิบายปรากฏการณ์เหล่านั้น ความเชื่อดั้งเดิมคือโลกเป็นศูนย์กลางของจักรวาล โดยมีดวงอาทิตย์ ดวงจันทร์ และดวงดาวต่าง ๆ เคลื่อนที่ไปโดยรอบ แนวคิดนี้เรียกว่า แบบจำลองแบบโลกเป็นศูนย์กลางจักรวาล (geocentric model)
มีการค้นพบทางดาราศาสตร์ที่สำคัญไม่มากนักก่อนการประดิษฐ์กล้องโทรทรรศน์ ตัวอย่างการค้นพบเช่น ชาวจีนสามารถประเมินความเอียงของแกนโลกได้ประมาณหนึ่งพันปีก่อนคริสตกาล ชาวบาบิโลนค้นพบว่าปรากฏการณ์จันทรคราสจะเกิดขึ้นซ้ำเป็นช่วงเวลา เรียกว่า วงรอบซารอสและช่วงสองร้อยปีก่อนคริสตกาล ฮิปปาร์คัส นักดาราศาสตร์ชาวกรีก สามารถคำนวณขนาดและระยะห่างของดวงจันทร์ได้
ตลอดช่วงยุคกลาง การค้นพบทางดาราศาสตร์ในยุโรปกลางมีน้อยมากจนกระทั่งถึงคริสต์ศตวรรษที่ 13 แต่มีการค้นพบใหม่ ๆ มากมายในโลกอาหรับและภูมิภาคอื่นของโลก มีนักดาราศาสตร์ชาวอาหรับหลายคนที่มีชื่อเสียงและสร้างผลงานสำคัญแก่วิทยาการด้านนี้ เช่น Al-Battani และ Thebit รวมถึงคนอื่น ๆ ที่ค้นพบและตั้งชื่อให้แก่ดวงดาวด้วยภาษาอารบิก ชื่อดวงดาวเหล่านี้ยังคงมีที่ใช้อยู่จนถึงปัจจุบัน

การปฏิวัติทางวิทยาศาสตร์

ภาพร่างการสังเกตการณ์ดวงจันทร์ของกาลิเลโอ ทำให้เห็นว่าพื้นผิวดวงจันทร์นั้นขรุขระ
ในยุคเรอเนซองส์ นิโคเลาส์ โคเปอร์นิคัส ได้นำเสนอแนวคิดแบบจำลองดวงอาทิตย์เป็นศูนย์กลาง ซึ่งถูกต่อต้านอย่างมากจากศาสนจักร ทว่าได้รับการยืนยันรับรองจากงานศึกษาของกาลิเลโอ กาลิเลอี และ โยฮันเนส เคปเลอร์ โดยที่กาลิเลโอได้ประดิษฐ์กล้องโทรทรรศน์หักเหแสงแบบใหม่ขึ้นในปี ค.ศ. 1609 ทำให้สามารถเฝ้าสังเกตดวงดาวและนำผลจากการสังเกตมาช่วยยืนยันแนวคิดนี้
เคปเลอร์ได้คิดค้นระบบแบบใหม่ขึ้นโดยปรับปรุงจากแบบจำลองเดิมของโคเปอร์นิคัส ทำให้รายละเอียดการโคจรต่าง ๆ ของดาวเคราะห์และดวงอาทิตย์ที่ศูนย์กลางสมบูรณ์ถูกต้องมากยิ่งขึ้น แต่เคปเลอร์ก็ไม่ประสบความสำเร็จในการนำเสนอทฤษฎีนี้เนื่องจากกฎหมายในยุคสมัยนั้น จนกระทั่งต่อมาถึงยุคสมัยของเซอร์ ไอแซค นิวตัน ผู้คิดค้นหลักกลศาสตร์ท้องฟ้าและกฎแรงโน้มถ่วงซึ่งสามารถอธิบายการเคลื่อนที่ของดาวเคราะห์ได้อย่างสมบูรณ์ นิวตันยังได้คิดค้นกล้องโทรทรรศน์แบบสะท้อนแสงขึ้นด้วย
การค้นพบใหม่ ๆ เกิดขึ้นเรื่อย ๆ พร้อมไปกับการพัฒนาขนาดและคุณภาพของกล้องโทรทรรศน์ที่ดียิ่งขึ้น มีการจัดทำรายชื่อดาวอย่างละเอียดเป็นครั้งแรกโดย ลาซายล์ ต่อมานักดาราศาสตร์ชื่อ วิลเลียม เฮอร์เชล ได้จัดทำรายการโดยละเอียดของเนบิวลาและกระจุกดาว ค.ศ. 1781 มีการค้นพบดาวยูเรนัส ซึ่งเป็นการค้นพบดาวเคราะห์ดวงใหม่เป็นครั้งแรก ค.ศ. 1838 มีการประกาศระยะทางระหว่างดาวเป็นครั้งแรกโดยฟรีดดริค เบสเซล หลังจากตรวจพบพารัลแลกซ์ของดาว 61 Cygni
ระหว่างคริสต์ศตวรรษที่ 19 ออยเลอร์ คลาเราต์ และดาเลมเบิร์ต ได้คิดค้นคณิตศาสตร์เกี่ยวกับปัญหาสามวัตถุ (three-body problem หรือ n-body problem) ทำให้การประมาณการเคลื่อนที่ของดวงจันทร์และดาวเคราะห์สามารถทำได้แม่นยำขึ้น งานชิ้นนี้ได้รับการปรับปรุงต่อมาโดย ลากรองจ์ และ ลาปลาส ทำให้สามารถประเมินมวลของดาวเคราะห์และดวงจันทร์ได้
การค้นพบสำคัญทางดาราศาสตร์ประสบความสำเร็จมากขึ้นเมื่อมีเทคโนโลยีใหม่ ๆ เช่น การถ่ายภาพ และสเปกโตรสโคป เราทราบว่าดวงดาวต่าง ๆ ที่แท้เป็นดาวฤกษ์ที่มีลักษณะคล้ายคลึงกับดวงอาทิตย์ของเรานั่นเอง แต่มีอุณหภูมิ มวล และขนาดที่แตกต่างกันไป[10]
การค้นพบว่า ดาราจักรของเราหรือดาราจักรทางช้างเผือกนี้ เป็นกลุ่มของดาวฤกษ์ที่รวมตัวอยู่ด้วยกัน เพิ่งเกิดขึ้นในคริสต์ศตวรรษที่ 20 นี้เอง พร้อมกับการค้นพบการมีอยู่ของดาราจักรอื่น ๆ ต่อมาจึงมีการค้นพบว่า เอกภพกำลังขยายตัว โดยดาราจักรต่าง ๆ กำลังเคลื่อนที่ห่างออกจากเรา การศึกษาดาราศาสตร์ยุคใหม่ยังค้นพบวัตถุท้องฟ้าใหม่ ๆ อีกหลายชนิด เช่น เควซาร์ พัลซาร์ เบลซาร์ และดาราจักรวิทยุ ผลจากการค้นพบเหล่านี้นำไปสู่การพัฒนาทฤษฎีทางฟิสิกส์เพื่ออธิบายปรากฏการณ์ของวัตถุเหล่านี้เปรียบเทียบกับวัตถุประหลาดอื่น ๆ เช่น หลุมดำ และดาวนิวตรอน ศาสตร์ทางด้านฟิสิกส์จักรวาลวิทยามีความก้าวหน้าอย่างมากตลอดคริสต์ศตวรรษที่ 20 แบบจำลองบิกแบงได้รับการสนับสนุนจากหลักฐานต่าง ๆ ที่ค้นพบโดยนักดาราศาสตร์และนักฟิสิกส์ เช่น การแผ่รังสีไมโครเวฟพื้นหลังของจักรวาล กฎของฮับเบิล และการที่มีธาตุต่าง ๆ มากมายอย่างไม่คาดคิดในจักรวาลภายนอก

ดาราศาสตร์เชิงสังเกตการณ์

กล้องโทรทรรศน์วิทยุจำนวนมากเรียงรายในลานกว้าง ที่รัฐนิวเม็กซิโก สหรัฐอเมริกา

ในทางดาราศาสตร์ สารสนเทศส่วนใหญ่ได้จากการตรวจหาและวิเคราะห์โฟตอนซึ่งเป็นการแผ่รังสีแม่เหล็กไฟฟ้า[11] แต่อาจได้จากข้อมูลที่มากับรังสีคอสมิก นิวตริโน ดาวตก และในอนาคตอันใกล้อาจได้จากคลื่นความโน้มถ่วง
การแบ่งหมวดของดาราศาสตร์เชิงสังเกตการณ์สามารถแบ่งได้ตามการสังเกตการณ์สเปกตรัมแม่เหล็กไฟฟ้าในย่านต่าง ๆ โดยการสังเกตการณ์บางย่านสเปกตรัมสามารถกระทำได้บนพื้นผิวโลก แต่บางย่านจะสามารถทำได้ในชั้นบรรยากาศสูงหรือในอวกาศเท่านั้น การสังเกตการณ์ดาราศาสตร์ในย่านสเปกตรัมต่าง ๆ แสดงดังรายละเอียดต่อไปนี้

ดาราศาสตร์วิทยุ


ดาราศาสตร์วิทยุเป็นการตรวจหาการแผ่รังสีในความยาวคลื่นที่ยาวกว่า 1 มิลลิเมตร (ระดับมิลลิเมตรถึงเดคาเมตร)  เป็นการศึกษาดาราศาสตร์ที่แตกต่างจากการศึกษาดาราศาสตร์เชิงสังเกตการณ์รูปแบบอื่น ๆ เพราะเป็นการศึกษาคลื่นวิทยุซึ่งถือว่าเป็นคลื่นจริง ๆ มากกว่าเป็นการศึกษาอนุภาคโฟตอน จึงสามารถตรวจวัดได้ทั้งแอมปลิจูดและเฟสของคลื่นวิทยุซึ่งจะทำได้ยากกว่ากับคลื่นที่มีความยาวคลื่นต่ำกว่านี้
คลื่นวิทยุที่แผ่จากวัตถุดาราศาสตร์จำนวนหนึ่งอาจอยู่ในรูปของการแผ่รังสีความร้อน โดยมากแล้วการแผ่คลื่นวิทยุที่ตรวจจับได้บนโลกมักอยู่ในรูปแบบของการแผ่รังสีซิงโครตรอน ซึ่งเกิดจากการที่อิเล็กตรอนเคลื่อนที่เป็นคาบรอบเส้นแรงสนามแม่เหล็ก นอกจากนี้สเปกตรัมที่เกิดจากแก๊สระหว่างดาว โดยเฉพาะอย่างยิ่งเส้นสเปกตรัมของไฮโดรเจนที่ 21 เซนติเมตร จะสามารถสังเกตได้ในช่วงคลื่นวิทยุ
วัตถุดาราศาสตร์ที่สามารถสังเกตได้ในช่วงคลื่นวิทยุมีมากมาย รวมไปถึงซูเปอร์โนวา แก๊สระหว่างดาว พัลซาร์ และนิวเคลียสดาราจักรกัมมันต์

ดาราศาสตร์เชิงแสง


การสังเกตการณ์ดาราศาสตร์เชิงแสงเป็นการศึกษาดาราศาสตร์ที่เก่าแก่ที่สุด คือการสังเกตการณ์ท้องฟ้าด้วยดวงตามนุษย์ โดยอาศัยเครื่องมือช่วยบ้างเช่น กล้องโทรทรรศน์ ภาพที่มองเห็นถูกบันทึกเอาไว้โดยการวาด จนกระทั่งช่วงปลายคริสต์ศตวรรษที่ 19 และตลอดคริสต์ศตวรรษที่ 20 จึงมีการบันทึกภาพสังเกตการณ์ด้วยเครื่องมือถ่ายภาพ ภาพสังเกตการณ์ยุคใหม่มักใช้อุปกรณ์ตรวจจับแบบดิจิตอล ที่นิยมอย่างมากคืออุปกรณ์จับภาพแบบซีซีดี แม้ว่าแสงที่ตามองเห็นจะมีความยาวคลื่นอยู่ระหว่าง 4000 Å ถึง 7000 Å (400-700 nm)  แต่อุปกรณ์ตรวจจับเหล่านี้ก็มักจะมีความสามารถสังเกตภาพที่มีการแผ่รังสีแบบใกล้อัลตราไวโอเลต และใกล้อินฟราเรดได้ด้วย

ดาราศาสตร์อินฟราเรด


ดาราศาสตร์อินฟราเรด เป็นการตรวจหาและวิเคราะห์การแผ่รังสีในช่วงคลื่นอินฟราเรด (คือช่วงความยาวคลื่นที่ยาวกว่าแสงสีแดง) ยกเว้นในช่วงคลื่นที่ใกล้เคียงกับแสงที่ตามองเห็น การแผ่รังสีอินฟราเรดจะถูกชั้นบรรยากาศของโลกดูดซับไปมากแล้วชั้นบรรยากาศจะปลดปล่อยรังสีอินฟราเรดออกมาแทน ดังนั้นการสังเกตการณ์ในช่วงคลื่นอินฟราเรดจึงจำเป็นต้องทำที่ระดับบรรยากาศที่สูงและแห้ง หรือออกไปสังเกตการณ์ในอวกาศ การศึกษาดาราศาสตร์ในช่วงคลื่นอินฟราเรดมีประโยชน์มากในการศึกษาวัตถุที่เย็นเกินกว่าจะแผ่รังสีคลื่นแสงที่ตามองเห็นออกมาได้ เช่น ดาวเคราะห์ และแผ่นจานดาวฤกษ์ (circumstellar disk) ยิ่งคลื่นอินฟราเรดมีความยาวคลื่นมาก จะสามารถเดินทางผ่านกลุ่มเมฆฝุ่นได้ดีกว่าแสงที่ตามองเห็นมาก ทำให้เราสามารถเฝ้าสังเกตดาวฤกษ์เกิดใหม่ในเมฆโมเลกุลและในใจกลางของดาราจักรต่าง ๆ ได้โมเลกุลบางชนิดปลดปล่อยคลื่นอินฟราเรดออกมาแรงมาก ซึ่งทำให้เราสามารถศึกษาลักษณะทางเคมีในอวกาศได้ เช่น การตรวจพบน้ำบนดาวหาง เป็นต้น

ดาราศาสตร์พลังงานสูง


ดาราศาสตร์รังสีอัลตราไวโอเลตเป็นการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นสั้นกว่าแสงม่วง คือประมาณ 10-3200 Å (10-320 นาโนเมตร)  แสงที่ความยาวคลื่นนี้จะถูกชั้นบรรยากาศของโลกดูดซับไป ดังนั้นการสังเกตการณ์จึงต้องกระทำที่ชั้นบรรยากาศรอบนอก หรือในห้วงอวกาศ การศึกษาดาราศาสตร์รังสีอัลตราไวโอเลตจะใช้ในการศึกษาการแผ่รังสีความร้อนและเส้นการกระจายตัวของสเปกตรัมจากดาวฤกษ์สีน้ำเงินร้อนจัด (ดาวโอบี) ที่ส่องสว่างมากในช่วงคลื่นนี้ รวมไปถึงดาวฤกษ์สีน้ำเงินในดาราจักรอื่นที่เป็นเป้าหมายสำคัญในการสำรวจระดับอัลตราไวโอเลต วัตถุอื่น ๆ ที่มีการศึกษาแสงอัลตราไวโอเลตได้แก่ เนบิวลาดาวเคราะห์ ซากซูเปอร์โนวา และนิวเคลียสดาราจักรกัมมันต์ อย่างไรก็ดี แสงอัลตราไวโอเลตจะถูกฝุ่นระหว่างดวงดาวดูดซับหายไปได้ง่าย ดังนั้นการตรวจวัดแสงอัลตราไวโอเลตจากวัตถุจึงต้องนำมาปรับปรุงค่าให้ถูกต้องด้วย

ดาราศาสตร์รังสีเอ็กซ์


ดาราศาสตร์รังสีเอ็กซ์ คือการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นของรังสีเอ็กซ์ โดยทั่วไปวัตถุจะแผ่รังสีเอ็กซ์ออกมาจากการแผ่รังสีซิงโครตรอน (เกิดจากอิเล็กตรอนแกว่งตัวเป็นคาบรอบเส้นแรงสนามแม่เหล็ก) จากการแผ่ความร้อนของแก๊สเบาบางที่อุณหภูมิสูงกว่า 107 เคลวิน (เรียกว่า การแผ่รังสี bremsstrahlung) และจากการแผ่ความร้อนของแก๊สหนาแน่นที่อุณหภูมิสูงกว่า 107 เคลวิน (เรียกว่า การแผ่รังสีของวัตถุดำ) คลื่นรังสีเอ็กซ์มักถูกชั้นบรรยากาศของโลกดูดซับไป ดังนั้นการสังเกตการณ์ในช่วงความยาวคลื่นของรังสีเอ็กซ์จึงทำได้โดยอาศัยบัลลูนที่ลอยตัวสูงมาก ๆ หรือจากจรวดหรือจากยานสำรวจอวกาศเท่านั้น แหล่งกำเนิดรังสีเอ็กซ์ที่สำคัญได้แก่ ระบบดาวคู่รังสีเอ็กซ์ พัลซาร์ ซากซูเปอร์โนวา ดาราจักรชนิดรี กระจุกดาราจักร และแกนกลางดาราจักรกัมมันต์

ดาราศาสตร์รังสีแกมมา


ดาราศาสตร์รังสีแกมมาเป็นการศึกษาวัตถุทางดาราศาสตร์ในช่วงความยาวคลื่นที่สั้นที่สุดของสเปกตรัมแม่เหล็กไฟฟ้า เราสามารถสังเกตการณ์รังสีแกมมาโดยตรงได้จากดาวเทียมรอบโลก เช่น หอดูดาวรังสีแกมมาคอมป์ตัน หรือกล้องโทรทรรศน์เชเรนคอฟ กล้องเชเรนคอฟไม่ได้ตรวจจับรังสีแกมมาโดยตรง แต่ตรวจจับแสงวาบจากแสงที่ตามองเห็นอันเกิดจากการที่รังสีแกมมาถูกชั้นบรรยากาศของโลกดูดซับไป
แหล่งกำเนิดรังสีแกมมาโดยมากมาจากการเกิดแสงวาบรังสีแกมมา ซึ่งเป็นรังสีแกมมาที่แผ่ออกจากวัตถุเพียงชั่วไม่กี่มิลลิวินาทีหรืออาจนานหลายพันวินาทีก่อนที่มันจะสลายตัวไป แหล่งกำเนิดรังสีแกมมาชั่วคราวเช่นนี้มีจำนวนกว่า 90% ของแหล่งกำเนิดรังสีแกมมาทั้งหมด มีแหล่งกำเนิดรังสีแกมมาเพียง 10% เท่านั้นที่เป็นแหล่งกำเนิดแบบถาวร ได้แก่ พัลซาร์ ดาวนิวตรอน และวัตถุที่อาจกลายไปเป็นหลุมดำได้ เช่น นิวเคลียสดาราจักรกัมมันต์